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Abstract

Phase problems arise from the lost Fourier phase in measuring the diffraction waves. Re-

constructing the phase information using the diffraction pattern of a target object yields the

target image, and it is called phase retrieval. This paper introduces an information-theoretic

approach to phase retrieval based on information measures, and a refined derivation of the

generalized phase retrieval algorithm based on the density power divergence is presented

with a simple numerical example using the Poisson-noise-contaminated Fourier intensity.
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1. Introduction

Losing the Fourier phase in measuring the diffraction waves is called “phase prob-

lems” in a diverse field of physics; x-ray crystallography, x-ray and electron microscopies,

astronomy, and general optics. The recent related topics are in the reference [16]. As a

mathematical representation of the problems, let ρ be the target object, and the intensity

measurement of the Fourier transformed ρ is given. The objective is to reconstruct the

Fourier phase.

The phase retrieval is to reconstruct the missing phase in the Fourier domain while

the intensity measurements are observed. The possibility to retrieve the lost phase
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was first pointed out by Sayer [15] in terms of Shannon’s sampling theorem. A cyclic
diagram using the Fourier transforms for phase retrieval was presented by Gerchberg
and Saxton [5]. And then, Fienup presented an error reduction (ER) algorithm based
on the steepest-descent method and the hybrid input-output (HIO) algorithm [4]. These
algorithms have been used in the fields of astronomy, general optics, x-ray crystallography
and electron microscopy. Experimental results of imaging from the diffraction pattern
without an objective lens using various light sources have been presented; imaging using
x-ray diffraction pattern [9, 10, 11, 13, 3], electron microscope [23, 6, 12], and tabletop
light sources of lasers [14]. Imaging without lens has been represented as diffractive

imaging [21].
Concerning the theoretical research for phase retrieval, a generalized phase retrieval

algorithm based on information measures was presented by Shioya and Gohara [17]. Their
result reveals that the ER algorithm is a kind of generalized phase retrieval algorithm
based on the density power divergence [1, 22]. And also, a new iterative phase retrieval
based on the maximum entropy method for the diffractive imaging was introduced [18].
In this paper, we introduce an information-theoretic approach to phase retrieval with a
refined derivation of the generalized phase retrieval algorithm, and a simple numerical
example of phase retrieval is presented using the Poisson-noise-contaminated Fourier
intensity.

2. Phase Retrieval

Measuring the diffraction wave from a target object, the diffraction patten consisted
by the intensity are measured, but the Fourier phase is lost. Losing the Fourier phase
in the measurement is called phase problem. The reconstruction of the phase is called
phase retrieval. In crystallography, the x-ray diffraction patterns of crystallines give the
structures of periodic materials, however, it is difficult to reconstruct the lost Fourier
phase in the case of non-periodic materials.

Figure 1: The relationship between the objects and diffraction patterns.

Figure 1 presents the relationship between an object and its diffraction pattern.
Based on the figure, let ρ be the object as the target material, and let S be the domain
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defining the object function ρ. Let the domain S be a discrete square array, N × N

(N ∈ N). The diffraction waves form ρ at the detector are presented by the following

discrete Fourier transform of ρ.

Fρ(k) =
∑

r∈S

ρ(r) exp{−i2πk · r/N}. (1)

where k is an index of the Fourier domain K (= N × N). The observed data at the

detector is the intensity data, and the phase is lost. If we have an estimation of the

lost phase, ψ̂(k), we have F̂ (k) = |Fobs(k)| exp(iψ̂(k)) and the following inverse Fourier

transform gives an estimation, ρ̂(r).

ρ̂(r) =
1

N2

∑

k∈K

F̂ (k) exp{i2πk · r/N}. (2)

As a practical method for phase retrieval, the algorithm consisted by the iterative

Fourier transforms was presented by Gerchberg and Saxton [5]. Their cyclic diagram is

presented in Fig. 2. The procedure of their algorithm is described as follows. The prior

object ρ is transformed into F by the Fourier transform FT; F is replaced by F ′ (the

amplitude is given by the experiment in the Fourier domain, and the phase of F ′ is the

same as that of F , while the replaced amplitude is the constraint in the Fourier domain);

ρ′ is obtained by the inverse Fourier transform of F ′; and ρ′ is replaced by the updated

object as the next ρ using some constraints in the object domain. And, Fienup presented

Figure 2: Gerchberg-Saxton diagram for phase retrieval.

the error reduction (ER) algorithm and the hybrid input output (HIO) algorithm with

computer simulations [4]. The ER is described as

ρn+1(r) =

{

ρ′n(r) r 6∈ S̄

0 r ∈ S̄
, (3)

where S̄ is the set of points at which ρ′n violates the object-domain constraints. The

following is the HIO, which is an improved version of the updating method with respect

to the region breaking the object-domain constraints:

ρn+1(r) =

{

ρ′n(r) r 6∈ S̄

ρn(r) − βρ′n(r) r ∈ S̄
, (4)
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where β is a positive constant. Although the Fourier phase was lost, the goodness of

the estimated phase can not be evaluated. Then, using the Fourier transform of the

estimated object ρ̂ obtained by the phase, the following R-factor is well-used.

R(F̂ , Fobs) =

∑

k∈K ||F̂ (k)| − |Fobs(k)||
∑

k∈K |Fobs(k)|
. (5)

The ER and HIO are regarded as identical with respect to the updating at points

satisfying the object-domain constraints. These algorithms have been effectively used

for the non-periodic case. However, the analysis of retrieving the lost phase for the case

are not still sufficient to reveal the pure theoretical aspect of phase retrieval. Then, an

advance analysis of phase retrieval based on an information-theoretic approach is needed.

3. Information-Based Analysis for Phase Retrieval

In this section, we describe the problem for phase retrieval in terms of information

divergences. Based on the iterative algorithms for phase retrieval using a generalized

information divergence [17], we present a refined derivation of the algorithms.

The problem is to estimate unknown object using the object and Fourier domain

constraints. Let ρtarget be the target function on the domain S, where ρ(x) ∈ C, x ∈

S. Two constraints are given in this problem. One is the Fourier intensity of ρtarget,

|FT(ρtarget)|, as the Fourier-domain constraint. Another is the prior information of the

target as the object-domain constraint. The problem is to reconstruct the reconstruction

of the phase of FT(ρtarget).

We then define the following finite-norm function sets, S and K.

S = {ρ |
∑

r∈S

|ρ(r)| <∞}, (6)

K = {F |
∑

k∈K

|F (k)| <∞}. (7)

More over, using L1-norm, the function spaces, Fobj = (S, L1) and FFourier = (K, L1),

are introduced. Using the two function spaces, we have a new representation of the

GS-diagram shown in Fig 3. As the Fourier-domain constraint, |Fobs|
2 is given, and the

object-domain constraint is given as prior information of the target object on the object

domain. Then, let Sobj be a subset of S satisfying the object-domain constraints, and Sobs

is a subset of S satisfying the Fourier-domain constraint given by |Fobs|
2. Let us define

the following pair given by the minimization of the L1-distance between an element of

Sobj and that of Sobs. This gives a plausible object, ρobj, regarded as a phase-retrieved

object.

(ρobs, ρobj) = arg minρ1∈Sobs,ρ2∈Sobj
L(ρ1, ρ2), (8)

where ρobs ∈ Sobs, ρobj ∈ Sobj, and L(ρ1, ρ2) = ‖ρ1 − ρ2‖.

If Sobj ∩ Sobs 6= φ, there exists ρobj satisfying ρobj = ρobs. If the cardinality of

Sobj ∩ Sobs is greater than 1, the solution of this problem is not unique. If Sobj ∩ Sobs is
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Figure 3: Coming and going between two function spaces Fobs and FFourier by the Fourier trans-
formation.

empty, these is no object perfectly satisfying both constraints. Therefore, ρobj is a least

favorable estimation not satisfying the Fourier-domain constraint given as the observed

|Fobj|. The pair (ρobs, ρobj) is related to the pair (ρ′, ρ) obtained by sufficiently-iterated

original GS-diagram (Fig. 2) with the ER algorithm, and the object support as the object-

domain constraints. Then, we present the relationship between an information-theoretic

method and phase retrieval in the next.

We suppose that ρ and ρ′ are real and non-negative functions, and define the infor-

mation discriminant measures as follows.

D2(ρ, ρ
′) =

∑

r∈S

{ρ(r) − ρ′(r)}2. (9)

D2(F,F
′) =

∑

k∈K

|F (k) − F ′(k)|2. (10)

The phase of F ′ is same as that of F because of the Fourier domain constraint. Then we

have

D2(F,F
′) = D2(|F |, |F

′|). (11)

Here, in order to introduce the update rule of the object functions for phase retrieval, let

us define ρ and τ as the prior and posterior objects, respectively. Figure 4 presents two

information measures, D2(ρ, τ) and D2(F,F
′), which are the discriminant measures on



6 International Journal of Information and Management Sciences, Vol. 21, No. 1, March, 2010

object and Fourier function spaces. Using the two information discriminant measures,

we introduce the following.

L2 = D2(ρ, τ) + λD2(F,F
′), (12)

where F = |Fρ| exp(iψρ) and F ′ = |Fobs| exp(iψρ). Using ∂L2/∂ρ = 0, we have

Figure 4: D2(ρ, τ) and D2(F, F
′) on two connective function spaces, Fobs and FFourier.

ρ(r) − τ(r) + λ(ρ(r) − ρ′(r)) = 0. (13)

However, this does not give an update rule of the ER. In the reference [17], the as-

sumption, that ‖ρ− τ‖ is sufficient small, is analytically used. In this paper, we present

a refined derivation of the update rules for making the information-theoretic approach

clear.

Let us consider the problem minimizing the first term of L2 and maximizing the

second term of L. For the purpose of this change, the following L̄2 is easily given as

L̄2 = D2(ρ, τ) − λD2(F,F
′). (14)

Then, using ∂L̄2/∂ρ = 0, we have

ρ(r) − τ(r) − λ(ρ(r) − ρ′(r)) = 0. (15)
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This means that D2(ρ, τ) is small and the R-factor is large. The inverse update of

Eq. (15) yields the minimization of L2. Then we have the following update rule from

nth object to (n+ 1)th object by

ρn+1(r) = ρn(r) − λ(ρn(r) − ρ′n(r)). (16)

In the case of λ = 1, we have the ER algorithm. Above result gives the relationship

between the information discriminant measure D2 and the ER algorithm. And the

assumption, that ‖ρn − ρn+1‖ is sufficient small, is not needed to derivate Eq. (16).

From the view of generalizing information divergence measures, Shioya and Gohara

presented the generalized phase retrieval algorithms [17]. Concretely, they use the fol-

lowing γ-divergence [1, 22] as the first term of L2.

Dγ(ρ, τ) =
∑

r∈S

{

1

γ
ρ(r)(ρ(r)γ − τ(r)γ) −

1

1 + γ

(

ρ(r)1+γ − τ(r)1+γ
)

}

, (17)

where γ ∈ [0, 1]. Some advanced mathematical properties of γ-divergence are in the

reference [2]. The Lagrange formula using γ-divergence is given by

Lγ = Dγ(ρ, τ) + λD2(F,F
′). (18)

Minimizing this Lagrange formula yields the following.

ρ(r) = {τ(r)γ + λ γ(ρ′(r) − ρ(r))}
1
γ . (19)

However, this does not presented the update rule for ρ only using τ . Then, we change

the problem for minimizing the first term of Lγ and for maximizing the second term of

Lγ . The Lagrange formula of this changed problem is given by

L̄γ = Dγ(ρ, τ) − λD2(F,F
′). (20)

The minimization of this gives the following.

ρ(r) = {τ(r)γ − λ γ(ρ′(r) − ρ(r))}
1
γ , (21)

where 0 ≤ γ ≤ 1 This gives ρ, which is near by τ in the meaning of γ-divergence and the

R-factor is large. The inverse update of Eq. (21) gives the minimization of Lγ as same as

in the case of L2. Then we have the following update rule from nth object to (n + 1)th

object by

ρn+1(r) = {ρn(r)γ + λ γ(ρ′n(r) − ρn(r))}
1
γ , (22)

where 0 ≤ γ ≤ 1 The case of γ = 0 gives a typical iterative phase retrieval algorithm

based on the maximum entropy method, which is essentially different from usual MEM

algorithm for crystallography [18]. Therefore, an information-theoretic approach to phase

retrieval gives a new view to phase problem from the field of information theory.
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4. Numerical Example

We performed the algorithms (0 ≤ γ ≤ 1) in the case using the true Fourier intensity,

|Ftarget|
2, of the target object ρtarget, and a feasible object is obtained for each case.

Therefore, we introduce a numerical example to present the effectiveness of the proposed

generalized algorithms for phase-retrieving from the Fourier intensity contaminated by

Poisson noise. At the detector in measuring the diffraction waves, the Poisson noise can

not be removed from the observed intensity measurement, fundamentally. The Fourier

intensity contaminated by Poisson noise is given by

|F poisson
obs (k)|2 ∼ c Poisson

(

|Ftarget(k)|2

c

)

. (23)

where c is the coefficient depending on the total count. The Fourier intensity of the

target object, |Ftarget|
2, is used as the expectation of the Poisson distribution.

We use the case γ = 0 of the generalized phase retrieval algorithms, which is given

by

ρn+1(r) = ρn(r) exp{λ(ρn(r)′ − ρn(r))}, (24)

because Dγ with γ = 0 is equal to the Kullback-Leiber divergence and its minimization

corresponds to the maximum entropy method. As the parameter in Eq. (24), λ needs

to be sufficiently small, because ρ(r) diverges to infinity in the process of computer

simulation. However, many iterations are required to obtain a plausible object using a

sufficient small λ. Then, we use the scheduled parameter depending on the number of

iterations n, λ(n) = ǫ(1 − n
1+M

), where ǫ is a positive constant and M is the maximum

number of iterations.

The target object ρtarget, which is shown in Fig. 5 (a), is a two-pillars object on the

one-dimensional discrete object domain (the size is 256). The random objects are used

as the initial start for the algorithms, In the first process, 500 iterated HIO is used and

the weakly estimated object is obtained. And then, in the second process, γ = 1 (1500

iterations) and γ = 0 (1500 iterations) are compared using the estimated object as the

initial start. The case of γ = 1 (λ = 1) is related to the ER algorithm. The case of γ = 0

is related to an iterative MEM phase retrieval algorithm. The Fourier-domain constraint

is given by the Fourier intensity of Fig. 5 (a) with the contamination of the Poisson noise

given by Eq. (23). The object support is used as the object-domain constraint. That is,

the value of the target object is zero on the object domain expect for the the support.

Figures 5 (b) and (c) are the obtained objects by using γ = 1 and γ = 0, respectively.

Figure 5 (d) shows the obtained objects by the two methods for comparing them. Three

typical differences between them are presented in the right side of the figure. In each

case, a coarse image of the target object is reconstructed. However, great influence of

the noise is found in the case of γ = 1, and such the influence in the case of γ = 0 is

smaller than that of γ = 1. As a result, the algorithm of γ = 0 has an efficiency in the

case of the Fourier intensity contaminated by Poisson noise.
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Figure 5: (a) The target object, (b) the object obtained by ER (γ = 1), (c) the object obtained
by the iterative MEM algorithm (γ = 0), (d) The obtained objects by the two methods are
presented. The typical differences between them are presented in the right side of the figure.

5. Conclusion

The phase retrieval has been widely treated in measuring the diffraction waves.

In the progress of the diffractive imaging for non-periodic objects, various advanced

experimental results have been presented. In this paper, based on the generalized phase

retrieval algorithms presented in [17], we introduce an information-theoretic approach to

phase retrieval. And also, we newly show a refined derivation of the algorithms with an

example of the algorithms using the Poisson-noise-contaminated Fourier intensity.

The analysis for phase retrieval is important for obtaining the certain results from the

experimental diffraction patterns. Recently, some experimental results using an advanced

electron microscope was presented by our research group [6, 7, 8], and we presented

the advanced theoretical and computational results [19, 20]. Hereafter, an information-

theoretic analysis of phase retrieval using various kinds of incomplete Fourier intensities

are one of our future works.



10 International Journal of Information and Management Sciences, Vol. 21, No. 1, March, 2010

References

[1] Basu, A., Harris, I. R., Hjort, N. and Jones, M. C., Robust and efficient estimation by minimizing

a density power divergence, Biometrika, Vol. 85, pp.549-559, 1998.

[2] Basu, A., Shioya, H. and Park, C., Statistical Inference: The Minimum Distance Approach, Mono-
graphs on statistics and applied probability, CRC press (in press).

[3] Chapman, H. N. et al., Femtosecond diffractive imaging with a soft-X-ray free-electron laser, Nature

Physics, Vol. 2, pp.839-843, 2006.

[4] Fienup, J. R., Phase retrieval algorithms: a comparison, Applied Optics, Vol. 21, pp.2758-2769,

1982.

[5] Gerchberg, R. W. and Saxton, W. O., A practical algorithm for the determination of phase from

image and diffraction plane pictures, Optik, Vol. 35, pp.237-246, 1972.

[6] Kamimura, O., Kawahara, K., Doi, T., Dobashi, T., Abe, T. and Gohara, K., Diffraction microscopy

using 20 kV electron beam for multiwall carbon nanotubes, Applied Phys. Lett., Vol. 92, 024106, 2008.

[7] Kamimura, O., Dobashi, T., Kawahara, K., Abe, T. and Gohara, K., 10-kV diffractive imaging using

newly developed electron diffraction microscope, Ultramicroscopy, Vol. 110, pp.130-133, 2010.

[8] Kawahara, K., Gohara, K., Maehara, Y., Dobashi, T. and Kamimura, O., Beam-divergence decon-

volution for diffractive imaging, Phys. Rev. B (accepted).

[9] Miao, J., Charalambous, P., Kirz, J. and Sayre, D., Extending the methodology of X-ray crystallog-

raphy to allow imaging of micrometre-sized non-crystalline specimens, Nature, Vol. 400, pp.342-344,
1999.

[10] Miao, J., Ishikawa, T., Johnson, B., Anderson, E. H., Lai, B. and Hodgson, K. O., High resolution

3D X-ray diffraction microscopy, Phys. Rev. Lett., Vol. 89, 088303, 2002.

[11] Miao, J., Ishikawa, T., Anderson, E. H. and Hodgson, K. O., Phase retrieval of diffraction patterns

from noncrystalline samples using the oversampling method, Phys. Rev. B, Vol. 67, 174104, 2003.

[12] Morishita, S., Yamasaki, J., Nakamura, K., Kato, T. and Tanaka, N., Diffractive imaging of the

dumbbell structure in silicon by spherical-aberation-corrected electron diffraction, Applied Phys. Lett.,

Vol. 93, 183103, 2008.

[13] Nishino, Y., Miao, J. and Ishikawa, T., Image reconstruction of nanostructured nonperiodic objects

only from oversampled hard x-ray diffraction intensities, Phys. Rev. B, Vol. 68, 220101(R), 2003.

[14] Sandberg, R. L. et al, Lensless diffractive imaging using tabletop coherent high-harmonic soft-x-ray

beams, Phys. Rev. Lett., Vol. 99, 098103, 2007.

[15] Sayre, D., Some implications of a theorem due to Shannon, Acta Crystallogr, Vol. 5, p.843, 1952.

[16] Shen, Q., Hao, Q. and Gruner, S. M., Macromolecular Phasing, Physics Today, AIP, Vol. 59, No. 3,
2006.

[17] Shioya, H. and Gohara, K., Generalized phase retrieval algorithm based on information measures,

Optics Communications, Vol. 266, pp.88-93, 2006.

[18] Shioya, H. and Gohara, K., Maximum entropy method for diffractive imaging, J. Opt. Soc. Am. A,

Vol. 25, pp.2864-2850, 2008.

[19] Shioya, H., Maehara, Y. and Gohara, K., Spherical shell structure of distribution of images recon-

structed by diffractive imaging, J. Opt. Soc. Am. A (accepted).

[20] Shioya, H., Watanabe, S. and Gohara, K., A study on phase retrieval based on evolutionary com-

putation, Proceedings of the 19th intelligent system symposium in Aizu-Wakamatsu, FAN 2009,

CD-ROM, D-2 (in Japanese), 2009.

[21] Spence, J. C. H., Science of Microscopy (eds P. W. Hawkes and J. C. H. Spence), Springer, New

York, 2007.

[22] Uchida, M. and Shioya, H., An extended formula for divergence measures using invariance, Electron-
ics and Communication in Japan: Part 3, Fundamental Electronic Science, Vol. 88, No. 4, pp.35-42,

2005.

[23] Zuo, J. M., Vartanyants, I., Gao, M., Zhang, R. and Nagahara, L. A., Atomic resolution imaging of

a carbon nanotube from diffraction intensities, Science, Vol. 300, pp.1419-1421, 2003.



An Information-Theoretic Approach to Phase Retrieval 11

Authors’ Information

Hiroyuki Shioya is a professor in the Division of Information and Electronic Engineering at Muroran

Institute of Technology in Japan. He received in his Ph.D. in Information Engineering from Hokkaido

university in Japan. His current research interests focus on statistical measure analysis, machine learning

and image processing for general optics.

Division of Information and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto,

Muroran, Hokkaido, 050-8585, Japan.

E-mail: shioya@csse.muroran-it.ac.jp TEL: +81-143-5436 FAX: +81-143-5499

Yosuke Maehara is a research staff in Division of Applied Physics at Graduate School of Engineering of

Hokkaido University. He received in his Ph.D. in Production and Information Systems Engineering from

Muroran Institute of Technology in Japan. His current research interests focus on diffractive imaging

and machine learning.

Division of Applied Physics, Graduate School of Engineering of Hokkaido University, N13, W8, Kita-ku,

Sapporo, Hokkaido, 060-8628, Japan.

E-mail: maegara@eng.hokudai.ac.jp

Shinya Watanabe is a lecturer in the Division of Information and Electronic Engineering at Muroran

Institute of Technology in Japan. He received the Ph.D. degree in Engineering from Doshisha University

in Japan. His current research interests focus on the evolutionary multi-objective optimization, machine

learning and data-mining.

Division of Information and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto,

Muroran, Hokkaido, 050-8585, Japan.

E-mail: sin@csse.muroran-it.ac.jp TEL: +81-143-5432 FAX: +81-143-5499

Kazutoshi Gohara is a professor in Division of Applied Physics at Graduate School of Engineering of

Hokkaido University. He received in his Ph.D. in Applied Physics from Nagoya University in Japan. His

current research interest lies in diffractive imaging.

Division of Applied Physics, Graduate School of Engineering of Hokkaido University, N13, W8, Kita-ku,

Sapporo, Hokkaido, 060-8628, Japan.

E-mail: gohara@eng.hokudai.ac.jp TEL: +81-11-706-6636


